Computing Infrastructures

Allgemeine Angaben

Kürzel	CI
Modulverantwortliche	Prof. Dr. Nüßer, Prof. Dr. Stehr
Dozenten	Prof. Dr. Gorniak, Prof. Dr. Nüßer, Prof. Dr. Stehr
Lehrsprache	Deutsch
Semester	3
ECTS	5
Kontaktstunden	40
Selbststudium	85
Dauer	1 Semester
Art	Pflicht
Häufigkeit	Jedes Studienjahr
Gewichtung	5/180
Prüfungsleistung	KRS90

Stichwörter

- Container
- Virtual Machines
- Operating Systems
- TCP, IP

Zugangsvoraussetzungen

- Grundlagen der Informatik
- Programmierung I und II
- Software Engineering + CI

Verwendbarkeit

- IT-Security and Risk Management
- Webtechnologies and Applications
- Advanced Topics in Computer Science
- Spezialisierung Cyber Security

Qualifikations- und Kompetenzziele

Die Studierenden sind in der Lage, die Elemente moderner Plattformen für die Entwicklung und den Betrieb von Anwendungen zu identifizieren, einzuordnen und abzugrenzen. Sie verstehen und beherrschen die grundlegenden Beschreibungsmethoden, Grundfunktionen sowie Protokolle und sind in der Lage diese kritisch zu bewerten. Sie können diese Kenntnisse in praktischen Situationen zur Analyse und Konzeption von technischen und fachlichen Problemlösungen einsetzen und sich sicher in modernen Betriebssystemen und Netzwerken bewegen.

Lehr- und Lernmethoden

Unterschiedliche Lehr-/Lernumgebungen: Präsenzveranstaltungen, Eigenstudium; Wechselnde Lehr-/Lernmethoden: Individuelles und kooperatives Lernen, forschendes und integratives Lernen anhand von Übungen und kleineren Fallstudien. Synchrones und asynchrones Lernen, Expertenvorträge.

Besonderheiten

entfällt

Inhalte

- Einführung: Aufbau von Anwendungen
 - O Überblick über die lokalen und Internet-basierten Architekturen
 - o Unterschiede lokaler und netzwerk-basierter Anwendungen
- Akteure
 - o Prozesse und Threads
 - Virtuelle Maschinen
 - Container
- Ressourcen
 - Aufgaben und Probleme beim Ressourcen-Zugriff
 - Hauptspeicher
 - o Dateisysteme
 - Netzwerk
- Ressource Netzwerk: Das Internet
 - o Grundlagen (physikalisch, konzeptionell)
 - Stack und Protokoll-Begriff
 - Fakten zum heutigen globalen Netz
- Protokolle im Netzwerk-Stack
 - o Layer 1 und 2: Lokale Verbindung von Knoten
 - o Layer 3: Verbindung von entfernten Knoten
 - o Layer 4: Verbindung von Prozessen
 - o L5: Kommunikation zwischen Anwendungen
- Aktuelle Trends
 - Weiterentwicklungen bei lokalen Plattformen
 - Weiterentwicklungen im Internet

Grundlegende Literaturhinweise

TANENBAUM, A.S. und D.J. WETHERALL, 2010. *Computer Networks*. Upper Saddle River: Prentice-Hall.

TANENBAUM, A. S. und H. BOS, 2016. *Moderne Betriebssysteme*. Hallbergmoos: Pearson.

Ergänzende Literaturempfehlungen

KUROSE, J.F. und K.W. ROSS, 2009. *Computer Networking: A Top-Down Approach*. Upper Saddle River: Prentice-Hall.

STEVENS, R.W., 2003. Unix Network Programming. Upper Saddle River: Prentice. Hall.